14 de noviembre de 2019
25 de septiembre de 2019

Fujitsu presenta un sofisticado estudio que muestra el estado del mantenimiento predictivo en Industria(I)

Fujitsu presenta un sofisticado estudio que muestra el estado del mantenimiento predictivo en Industria(I)
FUJITSUFIJITSU

Se considera como una de las palancas imprescindibles en la digitalización de la industria, para alcanzar el reto de la Smart Factory

Fujitsu presenta hoy en la sede de Repsol en Madrid, en colaboración con El Observatorio de Industria 4.0, un foro de intercambio de ideas y experiencias y el Club Excelencia en Gestión, una asociación empresarial dedicada a mejorar la gestión y los resultados corporativos, su "Estudio sobre Mantenimiento Predictivo en la Industria 4.0", algo fundamental para el desarrollo de la fábrica del futuro.

En él, se muestra la importancia para la industria española de implantar proyectos de mantenimiento predictivo, para anticiparse a posibles incidencias o errores activos y mejorar los procesos de producción, a través de diferentes tecnologías como son IoT, IA y la analítica avanzada. Todas ellas imprescindibles para posibilitar la medición, el análisis y monitorización de parámetros que definen los activos y el entorno de la fábrica.

En la industria se estima que la identificación temprana y la solución a problemas antes de que ocurran pueden suponer un ahorro de hasta un 40% en los costes de mantenimiento. Predecir y prevenir fallos o paradas en la infraestructura, controlar los activos o el equipamiento de manera temprana, no sólo asegura una intervención inmediata con la consiguiente reducción de costes, sino que también genera una mayor eficiencia en el negocio de las empresas. Aumentando la productividad de las líneas, optimizando stock, reduciendo el coste de oportunidad, por la no producción y disminuyendo el error humano.

Es importante señalar que el mantenimiento predictivo es valorado como una de las grandes palancas de la digitalización. Pero en líneas generales, el estudio desvela que, al tener muchos años las empresas en nuestro país, les cuesta decidirse a invertir en estos activos, por su maquinaria ya que carecen de procesos de sensorización o porque no guardan sus datos, entre otros aspectos. De ahí, que tan solo, el 35% de la muestra afirme que invierte en nuevas tecnologías. Las cuales se dividen en IoT un 21%, análisis de datos 21% e inteligencia artificial un 12%, quedando en un segundo plano.

El principal motivo de la inversión es optimizar la productividad, pero dejan ver las barreras para lograr la implantación del mantenimiento predictivo como son: el alto grado de inversión, falta de justificación o claro retorno del ROI, así como técnicas. Aunque pese a ellas, el 62,5% recomienda implementar el mantenimiento predictivo para conseguir la competitividad.

Para llegar al Smart Factory se debe entender la transformación digital desde un punto de vista de negocio. Optimizar los stocks y las líneas de producción, alargar la vida útil de la maquinaria y poder hacer un mantenimiento inteligente y programado.

Objetivos del estudio

Tres han sido los objetivos a conseguir en este estudio. Primero, conocer el nivel en el que se encuentran las empresas del sector industrial español. Segundo, exponer los aspectos a tener en cuenta antes, durante y después de abordar un proyecto de mantenimiento predictivo y tercero, compartir las experiencias.

En su desarrollo, realizado del 11 de febrero al 2 de junio de este año, la metodología empleada se ha estructurado en una ficha técnica de ámbito nacional, para contactos tanto clientes de Fujitsu como miembros del Observatorio de la Industria 4.0, que representan, sin lugar a dudas, una muestra amplia del sector industrial español.

Segmentación de empresas objeto del estudio

En cuanto a su tamaño, cabe destacar que en un 57% tienen más de 1.000 empleados. El 28% menos de 500 y el 15% restante entre 500 y 1.000. A todo ello, sumar su facturación. En un 55% de los casos facturan más de 100 millones de euros, el 23% sobre unos 10 millones de euros, y el 17% y el 5% restante de 10 a 50 millones y de 51 a 100, respectivamente.

Contacto

Nombre contacto: MIGUEL ÁNGEL TRENAS

Descripción contacto: Teléfono de contacto: 622836702